On the equivalence between (quasi-)perfect and sequential equilibria

نویسندگان

  • Carlos Pimienta
  • Jianfei Shen
چکیده

We prove the generic equivalence between quasi-perfect equilibrium and sequential equilibrium. Combining this result with Blume and Zame (1994) shows that perfect, quasi-perfect and sequential equilibrium coincide in generic games.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Forward Induction

We examine Hillas and Kohlberg’s conjecture that invariance to the addition of payoff-redundant strategies implies that a backward induction outcome survives deletion of strategies that are inferior replies to all equilibria with the same outcome. That is, invariance and backward induction imply forward induction. Although it suffices in simple games to interpret backward induction as a subgame...

متن کامل

No . 1955 On Forward Induction Srihari Govindan

We examine Hillas and Kohlberg’s conjecture that invariance to the addition of payoff-redundant strategies implies that a backward induction outcome survives deletion of strategies that are inferior replies to all equilibria with the same outcome. That is, invariance and backward induction imply forward induction. Although it suffices in simple games to interpret backward induction as a subgame...

متن کامل

Dynamic Monopolies with Stochastic Demand

This paper analyzes Perfect Bayesian Equilibria in dynamic monopolies with stochastic demand. It examines sequential take-it-or-leave-it o®ers and sequential auctions. It is shown that equilibria in the former mechanism trade-o® allocative e±ciency and competing buyers' opportunities to acquire an item to be sold, permitting prices and expected revenue above those of one-shot o®ers and sequenti...

متن کامل

Acyclicity of Preferences, Nash Equilibria, and Subgame Perfect Equilibria: a Formal and Constructive Equivalence

Sequential game and Nash equilibrium are basic key concepts in game theory. In 1953, Kuhn showed that every sequential game has a Nash equilibrium. The two main steps of the proof are as follows: First, a procedure expecting a sequential game as an input is defined as “backward induction” in game theory. Second, it is proved that the procedure yields a Nash equilibrium. “Backward induction” act...

متن کامل

Backward Induction in Games without Perfect Recall

The equilibrium concepts that we now think of as various forms of backwards induction, namely subgame perfect equilibrium (Selten, 1965), perfect equilibrium (Selten, 1975), sequential equilibrium (Kreps and Wilson, 1982), and quasi-perfect equilibrium (van Damme, 1984), are explicitly restricted their analysis to games with perfect recall. In spite of this the concepts are well defined, exactl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Game Theory

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2014